62 research outputs found

    Sensitivity to differences in the motor origin of drawings:from human to robot

    Get PDF
    This study explores the idea that an observer is sensitive to differences in the static traces of drawings that are due to differences in motor origin. In particular, our aim was to test if an observer is able to discriminate between drawings made by a robot and by a human in the case where the drawings contain salient kinematic cues for discrimination and in the case where the drawings only contain more subtle kinematic cues. We hypothesized that participants would be able to correctly attribute the drawing to a human or a robot origin when salient kinematic cues are present. In addition, our study shows that observers are also able to detect the producer behind the drawings in the absence of these salient kinematic cues. The design was such that in the absence of salient kinematic cues, the drawings are visually very similar, i.e. only differing in subtle kinematic differences. Observers thus had to rely on these subtle kinematic differences in the line trajectories between drawings. However, not only motor origin (human versus robot) but also motor style (natural versus mechanic) plays a role in attributing a drawing to the correct producer, because participants scored less high when the human hand draws in a relatively mechanical way. Overall, this study suggests that observers are sensitive to subtle kinematic differences between visually similar marks in drawings that have a different motor origin. We offer some possible interpretations inspired by the idea of "motor resonance''

    Reenacting sensorimotor features of drawing movements from friction sounds

    No full text
    International audienceEven though we generally don't pay attention to the friction sounds produced when we are writing or drawing, these sounds are recordable, and can even evoke the underlying gesture. In this paper, auditory perception of such sounds, and the internal representations they evoke when we listen to them, is considered from the sensorimotor learning point of view. The use of synthesis processes of friction sounds makes it possible to investigate the perceptual influence of each gestures parameter separately. Here, the influence of the velocity profile on the mental representation of the gesture induced by a friction sound was investigated through 3 experiments. The results reveal the perceptual relevance of this parameter, and particularly a specific morphology corresponding to biological movements, the so-called 1/3-power law. The experiments are discussed according to the sensorimotor theory and the invariant taxonomy of the ecological approach

    Annual variation in the levels of transcripts of sex-specific genes in the mantle of the common mussel, Mytilus edulis

    Get PDF
    Mytilus species are used as sentinels for the assessment of environmental health but sex or stage in the reproduction cycle is rarely considered even though both parameters are likely to influence responses to pollution. We have validated the use of a qPCR assay for sex identification and related the levels of transcripts to the reproductive cycle. A temporal study of mantle of Mytilus edulis found transcripts of male-specific vitelline coat lysin (VCL) and female-specific vitelline envelope receptor for lysin (VERL) could identify sex over a complete year. The levels of VCL/VERL were proportional to the numbers of sperm/ova and are indicative of the stage of the reproductive cycle. Maximal levels of VCL and VERL were found in February 2009 declining to minima between July - August before increasing and re-attaining a peak in February 2010. Water temperature may influence these transitions since they coincide with minimal water temperature in February and maximal temperature in August. An identical pattern of variation was found for a cryptic female-specific transcript (H5) but a very different pattern was observed for oestrogen receptor 2 (ER2). ER2 varied in a sex-specific way with male > female for most of the cycle, with a female maxima in July and a male maxima in December. Using artificially spawned animals, the transcripts for VCL, VERL and H5 were shown to be present in gametes and thus their disappearance from mantle is indicative of spawning. VCL and VERL are present at equivalent levels in February and July-August but during gametogenesis (August to January) and spawning (March to June) VCL is present at lower relative amounts than VERL. This may indicate sex-specific control mechanisms for these processes and highlight a potential pressure point leading to reduced reproductive output if environmental factors cause asynchrony to gamete maturation or release

    “Biological Geometry Perception”: Visual Discrimination of Eccentricity Is Related to Individual Motor Preferences

    Get PDF
    In the continuum between a stroke and a circle including all possible ellipses, some eccentricities seem more “biologically preferred” than others by the motor system, probably because they imply less demanding coordination patterns. Based on the idea that biological motion perception relies on knowledge of the laws that govern the motor system, we investigated whether motorically preferential and non-preferential eccentricities are visually discriminated differently. In contrast with previous studies that were interested in the effect of kinematic/time features of movements on their visual perception, we focused on geometric/spatial features, and therefore used a static visual display.In a dual-task paradigm, participants visually discriminated 13 static ellipses of various eccentricities while performing a finger-thumb opposition sequence with either the dominant or the non-dominant hand. Our assumption was that because the movements used to trace ellipses are strongly lateralized, a motor task performed with the dominant hand should affect the simultaneous visual discrimination more strongly. We found that visual discrimination was not affected when the motor task was performed by the non-dominant hand. Conversely, it was impaired when the motor task was performed with the dominant hand, but only for the ellipses that we defined as preferred by the motor system, based on an assessment of individual preferences during an independent graphomotor task.Visual discrimination of ellipses depends on the state of the motor neural networks controlling the dominant hand, but only when their eccentricity is “biologically preferred”. Importantly, this effect emerges on the basis of a static display, suggesting that what we call “biological geometry”, i.e., geometric features resulting from preferential movements is relevant information for the visual processing of bidimensional shapes

    A parsimonious oscillatory model of handwriting

    Get PDF
    International audienceWe propose an oscillatory model that is theoretically parsimonious, empirically efficient and biologically plausible. Building on Hollerbach’s (Biol Cybern 39:139–156, 1981) model, our Parsimonious Oscillatory Model of Handwriting (POMH) overcomes the latter’s main shortcomings by making it possible to extract its parameters from the trace itself and by reinstating symmetry between the x and y coordinates. The benefit is a capacity to autonomously generate a smooth continuous trace that reproduces the dynamics of the handwriting movements through an extremely sparse model, whose efficiency matches that of other, more computationally expensive optimizing methods. Moreover, the model applies to 2D trajectories, irrespective of their shape, size, orientation and length. It is also independent of the endeffectors mobilized and of the writing direction

    Bayesian Action–Perception Computational Model: Interaction of Production and Recognition of Cursive Letters

    Get PDF
    In this paper, we study the collaboration of perception and action representations involved in cursive letter recognition and production. We propose a mathematical formulation for the whole perception–action loop, based on probabilistic modeling and Bayesian inference, which we call the Bayesian Action–Perception (BAP) model. Being a model of both perception and action processes, the purpose of this model is to study the interaction of these processes. More precisely, the model includes a feedback loop from motor production, which implements an internal simulation of movement. Motor knowledge can therefore be involved during perception tasks. In this paper, we formally define the BAP model and show how it solves the following six varied cognitive tasks using Bayesian inference: i) letter recognition (purely sensory), ii) writer recognition, iii) letter production (with different effectors), iv) copying of trajectories, v) copying of letters, and vi) letter recognition (with internal simulation of movements). We present computer simulations of each of these cognitive tasks, and discuss experimental predictions and theoretical developments

    Identification of Reproduction-Specific Genes Associated with Maturation and Estrogen Exposure in a Marine Bivalve Mytilus edulis

    Get PDF
    Background: While it is established that vertebrate-like steroids, particularly estrogens (estradiol, estrone) and androgens (testosterone), are present in various tissues of molluscs, it is still unclear what role these play in reproductive endocrinology in such organisms. This is despite the significant commercial shellfishery interest in several bivalve species and their decline. Methodology/Principal Findings: Using suppression subtraction hybridisation of mussel gonad samples at two stages (early and mature) of gametogenesis and (in parallel) following controlled laboratory estrogen exposure, we isolate several differentially regulated genes including testis-specific kinases, vitelline lysin and envelope sequences. Conclusions: The differentially expressed mRNAs isolated provide evidence that mussels may be impacted by exogenous estrogen exposure

    Testing for the Dual-Route Cascade Reading Model in the Brain: An fMRI Effective Connectivity Account of an Efficient Reading Style

    Get PDF
    Neuropsychological data about the forms of acquired reading impairment provide a strong basis for the theoretical framework of the dual-route cascade (DRC) model which is predictive of reading performance. However, lesions are often extensive and heterogeneous, thus making it difficult to establish precise functional anatomical correlates. Here, we provide a connective neural account in the aim of accommodating the main principles of the DRC framework and to make predictions on reading skill. We located prominent reading areas using fMRI and applied structural equation modeling to pinpoint distinct neural pathways. Functionality of regions together with neural network dissociations between words and pseudowords corroborate the existing neuroanatomical view on the DRC and provide a novel outlook on the sub-regions involved. In a similar vein, congruent (or incongruent) reliance of pathways, that is reliance on the word (or pseudoword) pathway during word reading and on the pseudoword (or word) pathway during pseudoword reading predicted good (or poor) reading performance as assessed by out-of-magnet reading tests. Finally, inter-individual analysis unraveled an efficient reading style mirroring pathway reliance as a function of the fingerprint of the stimulus to be read, suggesting an optimal pattern of cerebral information trafficking which leads to high reading performance

    Corrélats cérébraux de l'écriture

    No full text
    International audienc
    corecore